
Chapter 5

Processes on complex networks.
Percolation
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Up till now we discussed the structure of the complex networks. The actual reason to study this structure
is to understand how this structure influences the behavior of random processes on networks. I will talk
about two such processes. The first one is the percolation process. The second one is the spread of
epidemics. There are a lot of open problems in this area, the main of which can be innocently formulated
as: How the network topology influences the dynamics of random processes on this network. We are still
quite far from a definite answer to this question.

5.1 Percolation

5.1.1 Introduction to percolation

Percolation is one of the simplest processes that exhibit the critical phenomena or phase transition. This
means that there is a parameter in the system, whose small change yields a large change in the system
behavior.

To define the percolation process, consider a graph, that has a large connected component. In the
classical settings, percolation was actually studied on infinite graphs, whose vertices constitute the set
Zd, and edges connect each vertex with nearest neighbors, but we consider general random graphs. We
have parameter ϕ, which is the probability that any edge present in the underlying graph is open or
closed (an event with probability 1 − ϕ) independently of the other edges. Actually, if we talk about
edges being open or closed, this means that we discuss bond percolation. It is also possible to talk about
the vertices being open or closed, and this is called site percolation. Obviously, if ϕ = 1 then we get
exactly the original graph, and if ϕ = 0 then no edges are open. If parameter ϕ is increased from 0 to
1 there will be a moment when a giant open component appears; in the language of percolation theory
this component is called giant cluster or spanning cluster. The value at which the giant cluster appear is
called the percolation threshold, and of the main goals of the theory is to determine this value depending
on the structure of the underlying graph. It is remarkable how difficult this problem can be even in
simply looking cases.

As an example consider a piece of the square lattice Z2 of the size 30× 40. If ϕ = 0.3 we can observe,
e.g., the following picture:
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Even perfunctory inspection is enough to confirm that there is no giant component in this graph. However,
if we change the value of the parameter to ϕ = 0.55 the picture changes dramatically:

In this case we definitely have the giant component. The presence of the paths connecting different sides
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of the lattice explains the name spanning cluster. Here you can see some of these paths from the previous
figure:

This numerical experiment confirms that the percolation threshold is between 0.3 and 0.55. Indeed,
for the bond percolation on the square lattice Z2 we know that ϕc = 1/2. The proof of this fact is
non-elementary1.

5.1.2 Bond percolation on d-ary trees

Consider a d-ary tree, i.e., a tree, where each node has exactly d offspring. Hence all the nodes, except
for the root, have degree d+1. Now assume that we are given a percolation probability ϕ that an edge is
open. Denote θ(ϕ) the probability that there is an infinite open cluster, containing the root, in our graph.
Then the percolation threshold is defined to be ϕc = inf{θ(ϕ) > 0} = sup{θ(ϕ) = 0}. By comparing the
percolation process with the Galton–Watson branching process, we see that we are looking exactly for
the condition on ϕ when we have supercritical branching process with the binomial probability that any
individual has k offspring, with parameters d and ϕ.

Recall that the generating function of the binomial random variable is given by φ(s) = (1−ϕ+ ϕs)d.
Let d = 2 for simplicity, then probability for extinction of the corresponding branching process is given
by π = 1 if ϕ ≤ 1/2 and π = ((1 − ϕ)/ϕ)2 if ϕ > 1/2. Since we have θ(ϕ) = 1 − ϕ, we obtain the final
result

θ(ϕ) =

0, ϕ ≤ 0.5 ,

1−
(

1−ϕ
ϕ

)2
, ϕ > 0.5 .

And therefore ϕc = 0.5.

Problem 5.1. If ϕ ≤ 1
2 we have that the open cluster size is finite. Find its average size and distribution

for the case of binary tree.

1see Jeffrey E. Steif, A mini course on percolation theory for an introduction to the classical percolation theory
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5.1.3 Site percolation on a configuration model

Recall that the configuration model G(n,d) is a probability space where each graph with exactly degree
distribution d = (d1, . . . , dn) has equal probability. With configuration model two probability distribu-
tions are associated: the degree distribution pk and the excess degree distribution

qk =
(k + 1)pk+1

ED
,

where ED is the expected degree distribution:

ED =

∞∑
k=1

kpk =

∑n
i=1 di
n

.

We denote φ0(s) and φ1(s) the probability generating functions for pk and qk respectively. Recall that
the condition for the existence of the giant component in the configuration model takes the form

ν =
ED2 − ED

ED
> 1.

Note that for the power law distribution with the exponent 2 ≤ γ ≤ 3 the second moment is infinite, and
hence the configuration model always has the giant component. Now we are interested in site percolation
on the configuration model. I.e., each vertex in the configuration model with ν > 1 can be “open” with
probability ϕ and “closed” with probability 1 − ϕ. We are looking for the condition on ϕ such that a
giant cluster appears in our graph. And we also interested in the size of the giant cluster.

Two situating are useful to have in mind while discussing what exactly we model by this site perco-
lation. First, you can think of the Internet graph, where vertices are the routers, which are working with
probability ϕ and are out of order with probability 1− ϕ. We are interested in the proportion of routers
that has to be kept in a working condition such that the Internet is still connected (i.e., the giant cluster
is present). The second situation is the vaccination process. Vaccination not only defends the person
who was vaccinated from the disease. It also protects others by preventing the disease spread through
this particular person. This actually leads to the concept of herd immunity, i.e., to the proportion of
people that has to be vaccinated to guarantee that the disease will not spread. The vertex is open, or
not vaccinated with probability ϕ, and hence the presence of the giant cluster means that there is a way
for the disease to spread throughout the population. Note that for the example with the Internet we
would like to construct the network such that the percolation threshold is low (ϕc is small) whereas for
the vaccination, we would prefer to increase the percolation threshold as much as possible, to reduce the
number of vaccinated people necessary for the herd immunity of the population.

Now consider heuristic arguments that lead to the condition for the percolation threshold.
Let u be the probability that a randomly chosen vertex is not in the giant cluster. Any vertex is not

in the giant cluster if and only if it is not connected to the giant cluster through any of its neighbors,
if this vertex has degree k than this probability is given by uk. We find that a randomly chosen vertex
belongs to the giant cluster with probability

1− φ0(u) = 1−
∑
k

pku
k,

but this only true for any open vertex, i.e., the one that was kept in the percolation process, hence the
total fraction of vertices that belong to the giant cluster if given by

S = ϕ(1− φ0(u)).

Now we calculate u. For a vertex not to belong to the giant cluster, its neighbor has be either closed (an
event of probability 1 − ϕ), or it is open (probability ϕ but does not belong to the giant cluster itself).
Hence,

u =
∑
k

qk(1− ϕ+ ϕuk) = 1− ϕ
∑
k

qku
k = 1− ϕ+ ϕφ1(u).

81



Putting everything together, we obtain

Proposition 5.1. In the configuration model φ(n,d), the size of the giant cluster can be found as

S = ϕ(1− φ0(u)),

where u is the smallest solution to the equation

u = 1− ϕ+ ϕφ1(u).

Strictly speaking this results holds for the two staged branching process, where the first generation
of the descendants has the distribution pk, and all subsequent generations has distribution qk. Note that
we always have solution u = 1, which corresponds to the absence of the giant cluster. It is possible to
have another smaller solution to this problem if and only if the slope of the function 1 − ϕ + ϕφ1(s) at
the point s = 1 is strictly bigger than one, here the reasoning almost literally repeats the discussion in
the branching process section. Therefore, we find that

ϕφ′
1(1) > 1 =⇒ ϕ >

1

ν
,

since ν = φ′
1(1). Therefore, the critical percolation probability is given by

ϕc =
1

ν
,

and of course this expression makes sense only if ν > 1 as expected.

Problem 5.2. Show that for a Poisson random graph the percolation threshold is given by

ϕc =
1

λ
.

Now we are ready to state one of the most famous results in network science: “The Internet is
robust.” Consider the degree distribution for the configuration model to obey a power law with the
exponent 2 < γ ≤ 3. In this case, since ED2 = ∞, then the percolation threshold is simply

ϕc = 0,

which implies that independently of with which probability we keep the vertices in the model, there
is always a giant cluster in the model. This conclusion was used as a proof that the Internet will say
connected even if most of the routers will stop working. On the other hand, if we consider the vaccination
of people, it implies that if the contact network of the population has the power law degree distribution
with the exponent 2 < γ ≤ 3, then it is impossible to get the herd immunity phenomenon in this
population.

Let us critically access these far reaching conclusions.

• This conclusion is based on a branching process approximation to the percolation process on a
configuration model. The Internet, while probably having power law degree distribution, is not a
configuration model, it has some additional structure.

• The size of the giant cluster is somewhat missing in this discussion.

Example 5.2. Consider a network with degree distribution given by

pk = (1− e−λ)e−λk.
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This is so called discrete exponential degree distribution. We find that

φ0(s) =
eλ − 1

eλ − s
, φ1(s) =

(
eλ − 1

eλ − s

)2

.

Hence we find for u:
u(eλ − u)2 − (1− ϕ)(eλ − u)2 − ϕ(eλ − 1)2 = 0,

which is a cubic equation. We know that u = 1 is always a root, therefore, we can factorize it as

(u− 1)(u2 + (ϕ− 2eλ)u+ ϕ− 2ϕeλ + e2λ) = 0,

we are looking for the smallest root, which is

u = eλ − ϕ

2
−
√
ϕ2

4
+ ϕ(eλ − 1) .

It means that

S =
3

2
ϕ−

√
1

4
ϕ2 + ϕ(eλ − 1),

and the percolation threshold here is

ϕc =
1

2
(eλ − 1).

Now we can plot the size of the giant cluster as the function of the percolation probability (make figure).

For the power law distribution pk ∼ ck−γ it can be shown that the size of the giant cluster is
asymptotically given by

S = cϕ
γ−2
3−γ

for 2 < γ < 3, and

S = e
−(1+o(1))

cϕ .

as ϕ → 0, i.e., it is vanishingly small. So assume that ϕ = 0.05, i.e., 95% of the cites were destroyed
and assume also that pk ∼ 0.832k−3. Our main result says that we still have the giant cluster, but the
calculation would tell us that S ∼ 10−11, so there is no point in talking about actual Internet to be
connected.

5.1.4 Intentional damage of sites

Up till now all the vertices were “open” or “closed” independently with the same probability ϕ. Now
consider a generalization, in which ϕk denotes the probability that vertex with degree k is open. For
example, we can have that ϕk = 1 for k < k0 and ϕk = 1 for k ≥ k0, in this case we remove all vertices
of degree k0 and larger from the network. You should now that we can choose a strategy for damaging a
network.

Let u as before be the probability that a vertex is not connected to the giant cluster through its
neighbors. If there are k neighbors, then this probability is uk, and hence 1− uk is the probability that
this vertex is connected to the giant cluster. To belong to the giant cluster this vertex has to be open,
an even of probability ϕk, hence the probability of being a member of the giant cluster is ϕk(1−uk). We
find then that the size (the proportion of nodes in the giant cluster) is

S =
∞∑
k=0

pkϕk(1− uk) =
∞∑
k=0

pkϕk −
∞∑
k=0

pkϕku
k = ψ0(1)− ψ0(u),
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where

ψ0(s) =

∞∑
k=0

pkϕks
k.

Note that ψ0(1) gives the expectation of the number of open vertices.
Again, very similarly to the previous section, we have that the probability that a vertex is not

connected to the giant cluster through its neighbors can be calculated as follows: Either a neighbors is
closed (probability 1− ϕk+1) or open, but then it does not belong to the giant cluster (ϕk+1u

k). Adding
everything together

u =
∞∑
k=0

qk(1− ϕk+1 + ϕku
k) = 1− ψ1(1) + ψ1(u),

where

ψ1(s) :=

∞∑
k=0

qkϕks
k.

Note that

ψ1(s) =
ψ′
0(s)

φ0(1)
.

We obtain that

Proposition 5.3. If the percolation probability given by (ϕk)
∞
k=0, then the size of the giant cluster can

be found as
S = ψ0(1)− ψ0(u),

where u is the smallest root of
u = 1− ψ1(1) + ψ1(u).

Example 5.4. Consider again the example with

pk = (1− e−λ)e−λk.

and assume that

ϕk =

{
1, k < k0,

0, k ≥ k0.

Then

ψ0(s) = (1− e−λ)

k0−1∑
k=0

e−λksk = (1− e−λk0sk0)
eλ − 1

eλ − s
,

and

ψ1(s) =
(
(1− e−λk0sk0)− k0e

−λ(k0−1)sk0−1(1− e−λs)
)(eλ − 1

eλ − s

)2

.

Using these equations we can numerically find the size of the giant cluster.

Problem 5.3. Use the last example to show numerically that it is enough to remove approximately
8% of vertices with highest degree to destroy the giant cluster. This fact is in large contrast with the
random removal of vertices, in which almost 70% of vertices has to be made closed, for the giant cluster
to disappear.

For the case of the power law distribution, numerical computations show that it is enough to remove
a very tiny fraction of vertices with the highest degree to destroy the giant cluster (the estimates are 3%
for γ close to 2, and less than 1% for γ close to 3). This is the explanation of the “fragile” part of the
Internet.
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Chapter 6

Epidemics on networks

6.1 Mathematical modeling of epidemic spread

6.2 Reed–Frost model

6.3 Reed–Frost model and Erdős–Rényi random graph

6.4 General epidemic model. Branching process approach to
the early stages

6.5 Epidemic process on the configuration model: Percolation

6.6 Mean field models and time-dependent dynamics

6.7 Time-dependent dynamics and pair approximations

6.8 Time dependent dynamics on the configuration model
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